
Journal of Statistical Physics, Vol. 90, Nos. 3/4, 1998

Dirichlet Forms and Dirichlet Operators for Gibbs
Measures of Quantum Unbounded Spin Systems:
Essential Self-Adjointness and Log-Sobolev Inequality

Hye Young Lim,1 Yong Moon Park,2 and Hyun Jae Yoo3'4

' Department of Mathematics, Sogang University, Seoul 121-742, Korea; e-mail: limhy(a
bubble.yonsei.ac.kr.

2 Department of Mathematics and Institute for Mathematical Sciences, Yonsei University,
Seoul 120-749, Korea; e-mail: ympark(<3; bubble.yonsei.ac.kr.

3 Institute for Mathematical Sciences, Yonsei University, Seoul 120-749, Korea; e-mail:
yoohj(a phya.yonsei.ac.kr.

4 Institut fur Mathematik, Ruhr-Universitat-Bochum, D-44780 Bochum, Germany; e-mail:
hyun.j.yoo(i?rz.ruhr-uni-bochum.de.

0022-4715/98/0200-0949S15.00/0 © 1998 Plenum Publishing Corporation

949

822/90/3-4-28

Received June 21, 1996; final October 28, 1997

For each y e [0, 1 ] we consider the Dirichlet form <f j/1 and the associated
Dirichlet operator H™ for the Gibbs measure ft of quantum unbounded spin
systems interacting via superstable and regular potential. The Gibbs measure /(
is related to the Gibbs state of the system via a (functional) Euclidean integral
procedure. The configuration space for the spin systems is given by Q :=EZ",
E:={eoeC([0,l];R'1): w(0) = co(l)}. We formulate Dirichlet forms in the
framework of rigged Hilbert spaces which are related to the space Q. Under
appropriate conditions on the potential, we show that the Dirichlet operator
H(J} is essentially self-adjoint on the domain of smooth cylinder functions. We
give sufficient conditions on the potential so that the corresponding Gibbs
measure is uniformly log-concave (ULC). This property gives the spectral gap
of the Dirichlet operator //<," at the lower end of the spectrum. Furthermore,
we prove that under the conditions of (ULC), the unique Gibbs measure /<
satisfies the log-Sobolev inequality (LS). We use an approximate argument used
in the study of the same subjects for loop spaces, which in turn is a modification
of the method originally developed by S. Albeverio, Yu. G. Kondratiev, and
M. Rockner.

KEY WORDS: Quantum unbounded spin systems; superstable interactions;
Gibbs measures; Dirichlet forms; Dirichlet operators; approximate criterion;
essential self-adjointness; uniform log-concavity; log-Sobolev inequality.



1. INTRODUCTION

We consider Dirichlet forms and the associated Dirichlet operators for the
Gibbs measures of quantum unbounded spin systems interacting via super-
stable and regular potentials. The Gibbs measures we deal with can be
understood in the sense of Euclidean Gibbs measures associated to the
Gibbs states of the systems via a (functional) Euclidean integral procedure.
We study the essential self-adjointness problem of Dirichlet operators on a
minimum definition of domains and some related properties for Gibbs
measures including the L2-ergodicity and the log-Sobolev inequality for
Gibbs measures. This paper is a continuation of ref. 37 in which we have
studied the above mentioned subjects for Gibbs measures on loop spaces
and also a continuation of our former work(32) in which we have
investigated the Dirichlet forms and the associated diffusion processes for
Gibbs measures of quantum unbounded spin systems.

The theory of Dirichlet forms on finite dimensional spaces is a well
known modem tool in potential theory'21'44) and quantum mechanics.'4'53)

The extension of the theory to infinite dimensional spaces is more recent (e.g.,
refs. 2-8, 11-12, 34, 39 and the references therein). In all case the forms are
given first on some minimal domains. Most of results then touch upon the
problems of the closability of the forms and the construction of correspond-
ing diffusion processes. The uniqueness problem of determining whether a
given closable form possessing the contraction property has a unique
closed extension has also been discussed in recent years.'13~14' 42-*3- $0-52)
Clearly the essential self-adjointness of the associated Dirichlet operator
implies the uniqueness. In this direction, various conditions for the essential
self-adjointness of the Dirichlet operators have been obtained.'5^8>27'37'50~51)

The results have been applied to the Dirichlet operators corresponding to
Gibbs measures of classical unbounded spin systems.'7'8-31* Main purpose
of this paper is to extend the results in refs. 7, 31, and 37 to quantum
unbounded spin systems.

In applications, the presence of log-Sobolev inequality for the Gibbs
measures is essential to prove the L2-ergodicity and the hypercontractivity
of the semi-group T, = exp( — HMt), / ^ O , generated by Dirichlet operator
Hp and it has a wide range of applications.'20' The log-Sobolev inequality
was first proven by Gross,'23' and then extended in many direc-
tions <7 '9> 20> 24'31'37'47^*9' 56~59>

The quantum unbounded spin systems can be viewed as a model for
the quantum anharmonic crystals'19' and is closely related to lattice field
theory with continuous times.'" There have been extensive studies on the
systems (see refs. 9, 35 and references therein). The existence of infinite
volume limit Gibbs measures has been established in refs. 15 and 35.
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Method of cluster expansions has been developed in refs. 1, 26, 36 and
existence of phase transitions for ferromagnetic type interactions has been
proved by using reflection positivity methods. "6'25) Stochastic dynamics
and Gibbs measures for the model have been also constructed by stochastic
quantization method.(10) Recently, the uniqueness of Gibbs measures for
certain interaction systems was shown by using Dobrushin's uniqueness

• • /Q \criterion.1 '
Let us briefly describe the contents of this paper. We consider quan-

tum unbounded spin sytems on the v-dimensional lattice space Z"-<9.35-36)
For each finite subset A c Zv, the local Hamiltonians are given by

where XA and yA are points in (Ud)A, £ A e ( C ( [ Q , 1]; Rd)) /1, V(t,A) =
\o V(^,A(T:}) dr, and Px,y is the conditional Wiener measure'461 on
(C([0, l ] ;R r f ) ) / i . Then The" normalization factor Tr^,,^,^-"") can be
expressed as

where dxA is the Lebesgue measure on ( U d ) A . Using the above formula we
were able to define Gibbs specifications and then define the Gibbs
measures on £:=£z", £:= {cue C([0, 1]; Ud): w(0) = o>( l )} , in terms of
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where A, is the Laplacian operator on L2(Rd) for each /e/i , and P(x) and
U(x, y; /•), re N, are translational invariant one-body and two-body inter-
actions, respectively, satisfying appropriate conditions (Assumption 2.1).

Throughout this paper, we set the inverse temperature ft( = l / k T )
equals to 1. Then for each A <= K.d the local Gibbs state is given by

where ,o/A is the local algebra of bounded operators on L2((R r f) / 1) . By the
Feynman-Kac formula,'46' the density operator exp( — HA) has its integral
kernel
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Gibbs specifications (see Section 2.1).(35) Furthermore, a characterization
of Gibbs states on the quasi local C*-algebra s& • =(\JA<=P^)~ was given
through the Gibbs measures on the configuration space Q (see ref. 35 for
the details). This is so called an Euclidean approach to the problem of
equilibrium quantum statistical physics of lattice systems.'1'15'161

As in ref. 37, we will study the Dirichlet form for the Gibbs measures
in the framework of rigged Hilbert spaces/5"8'9>27'31~32-37) For each
ye [0, 1], we will introduce rigged Hilbert spaces for one site spin systems
and for the configuration space, respectively: For single spin systems

and for configuration space

The above embbedings are everywhere dense and belong to the
Hilbert-Schmidt class. See Section 2.1 for the details. Let ^locC^(je(^) be
the space of functions on 3f^ which are smooth with bounded derivatives
and depend on local and finitely many variables. For any Gibbs measure
H, we will consider the following pre-Dirichlet form:

where « •, -» ( ) l ) is the dual pairing between W^ and Jf^ and V is the
gradient operator. For the form in (1.6) there corresponds a symmetric
Dirichlet operator H^ such that the form can be represented by

The Dirichlet operator H(^ is given by

where A is the Laplacian operator and ^v\£,} the logarithmic derivative of
the measure p.

One of the main problems is to show that for each ye [0, 1], H™ is
essentially self-adjoint with a core J^ocC^°(^f (Z'). In ref. 37, we have
considered the same problem for the single spin systems, i.e., for loop
spaces. We have introduced a criterion for essential self-adjointness of
Dirichlet operators by using an approximate method for the logarithmic
derivative of a given Gibbs measure which was in turn a modification of



a method originally developed by S. Albeverio, Yu. G. Kondratiev, and
M. R6ckner.(5~7) Our method can be applied not only to loop spaces, but
also to lattice systems.

After showing the essential self-adjointness of Dirichlet operator it is
worth to know some information on the potential so that the corre-
sponding Gibbs measure is uniformly log-concave (ULC) and the Dirichlet
operator H(J} has a spectral gap at the lower end of the spectrum. We have
given sufficient conditions for (ULC) which imply the uniqueness of the
Gibbs measure.'9'54) We then show that under the condition for (ULC),
the unique Gibbs measure // satisfies the log-Sobolev inequality. These
properties are essential to show the L2-ergodicity of the semi-group
Tt:=cxp(-H^t), t^O.

We organize this paper as follows: In Section 2.1, we discuss briefly
the Gibbs measures for quantum unbounded spin systems and then intro-
duce rigged Hilbert spaces, Dirichlet forms and associated Dirichlet
operators. In Section 2.2, we state the main results of this paper. Among
them, we have the essential self-adjointness of Dirichlet operators
(Theorem 2.7), (ULC) of Gibbs measures (Theorem 2.10), and (LS) for
Gibbs measures (Theorem 2.12). Section 3 is devoted to prove the essential
self-adjointness of Dirichlet operators. In Section 4, we prove (ULC) and
(LS) for Gibbs measures. In Section 5, we try to improve the results in
Section 2.2 by relaxing some requirements on the interaction.

2. NOTATION, PRELIMINARIES, AND MAIN RESULTS

2.1. Notation and Preliminaries

We will use the notations introduced in refs. 32, 35, and 37. For
reader's convenience, however, we will briefly review the basic notation,
definitions, and preliminaries that are needed in this paper. For the details
we refer to refs. 32, 35, and 37.

We denote by Z" the v-dimensional integer lattice space and by # the
class of finite subsets ofZv. For x = (x1,..., xd)e R</ and i = (il,..., / v ) e Z v we
write
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Let dx be the Lebesgue measure on Rd. For each A e #, we write
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We consider only one-body and two-body interactions. The potential func-
tion for A e <$ is defined by

where <P^^ and <P^it^ are the interaction functions which are measurable
real valued functions on Ud and ((Rr f)2 , respectively. Throughout this paper,
we impose the following conditions on the interaction:

Assumption 2.1. The interaction <£> = ($j)z,c :z"> Ml <2, satisfies
the following conditions:

(a) There exist a differentiable function P(x) on Ud and positive
constants a and 6 such that for each ;'e/v, 0{,-((.x';) = .P(x,.) and for some
a ^ 2 the bound

holds.

(c) For each r e N , there exists a differentiable symmetric function
C/(-,.;r): Rdx(R<'->R such sucthat 4>{itJ}(xl,Xj) = U(xi,xj;\i-j\)=U(xJ,xi;
\i — j\) for each i, je 1_v, Moreover, there exists a decreasing function f on
N such that t f f ( r ) ^ K r ~ " ~ e for some constants K and s>Q and such that
the bounds

hold.

holds. For a = 2, the positive constant a assumes to be sufficiently large.

(b) For any positive real number <5>0, there exists a constant M(S)
such that the bound

hold.

(d) Let *F: N -> IR be the function given in the above. Then the
bounds
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In the following we will frequently use U(x/, Xj) for U(x/, Xj\ i — j \ ) if
there is no confusion involved.

Remark. (a) Assumption 2.1 (a) and (c) imply that the interaction
is superstable and regular.'30'35>41) In the case for a = 2, see ref. 26.

(b) The potential function V in (2.3) can be written as

for any Ae<&.

In relevance to the quantum unbounded spin systems, there
corresponds a loop space E:=Udx W0i0 to each site /eZ", where for
x,yeUd, W x < y : = { c o e C ( \ _ 0 , l ~ \ ; U d ) : c a ( Q ) = x,u>(\) = y}. The interval
[0, 1] is understood as a circle by matching the end points 0 and 1. For
caeE, we give the sup-norm \<a\u by

E is equipped with the standard Borel space structure. We introduce a
reference measure 1 on E by

where P := PQ 0, and Px y, x, ye Rd, is the conditional Wiener measure on
Wx<y,

(*6) We will also write k(da>A) instead of XA(d.K>A) for any finite
A c Z". The configuration space is Q := Ev. Let nt: Q -> E be the projec-
tion: for £,=(£,i)ie^eQ, TI,-(£) :=£,. We topologize Q by the countable
seminorms, {p,}isf, />,•(£) := |7T , - (£ ) I U . F°r eacn subset AcZv, we have a
local cr-algebra J^, which is the minimal er-algebra of Borel sets for which
Pi, ie/1, is continuous. We simply write J* for ^2>. By 3?(Q, &) we mean
the space of all probability measures on (Q, J5").

For brevity, let us use the notation

Definition 2.2. We say that a Borel probability measure n on
(Q, 3?) is regular if there exist A* > 0 and 6 > 0 so that the projection /UA
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of ^ on any (Q, ^A), being understood as a measure on (EA,3$(E)A),
satisfies

where g(coA \ /u) is such that nA(d(aA) = g((oA \ //) l(dioA).

For A, A c Zv, let us write

and for £ e Q and A <= Zv,

Let us define

It can be shown that for any regular measure ,«, JM(^) = l.(35)

Definition 2.3. We say that a Borel probability measure ju on
(Q, ^) is tempered*60' if /u(^) = 1.

Remark. The class of tempered probability measures on (Q, 3F} we
consider here is more restrictive than the one considered by other authors
under the same terminology (see e.g., refs. 9 and 55). We will deal
exclusively with the tempered Gibbs measures in the above sense. Thus, it
remains open wheather the results obtained in this paper hold true or not
for Gibbs measures in the more wide sense of refs. 9 and 55.

The partition function in a finite A c /" for the interaction <P with
boundary condition £, e y is defined by
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The Gibbs specification y* = (y*)AeV with respect to y is defined by

where AetF and 1A is the indicator function of A and £,A £AC is the con-
figuration coinciding with £A on A and with £Ac on Ac, respectively. It is
easily checked that the Gibbs specification satisfies the consistent condi-
tion: for A a A, £e«^,

The Gibbs measures are now defined by

Definition 2.4, A Gibbs measure /j. for the potential <P is a tem-
pered Borel probability measure on (Q, &) satisfying the equilibrium equa-
tions

We denote by <$*(Q) the family of all Gibbs measures.

We topologize the space ^(Q,^) with the topology of local con-
vergence(22> 30): for each ^e0>(Q, &), the sets

with A1,...,Ane\JAe«&A, e>0, and n^l, form a base of neighborhoods
of//. In ref. 35, we have obtained the following results.

Theorem 2.5 (ref. 35, Theorem 2.7). Let the hypotheses in
Assumption 2.1 (a) and (c) hold. Then any Gibbs measure is regular.
Furthermore, ^0(Q) is non-empty, convex, compact in the local con-
vergence topology, and a Choquet simplex.

In order to study the Dirichlet forms and diffusion processes related to
Gibbs measures, we introduce some rigged Hilbert spaces related to the
single particle system E and also for the configuration space Q. We begin
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first with the loop space.(37) Let Ap be the Laplacian operator on the
Hilbert space L2[0, 1] := L2([0, 1]; Ud, dr) with periodic boundary condi-
tion and define a positive self-adjoint operator A on L2[0, 1] by

For each ye[0 , 1], let H^> , H < / > , and H(I> be the real Hilbert spaces
obtained by completions of C°°([0, l ] ;R r f ) with norms |.|<^, \.\(» and
\-\M induced by

respectively. Here we have denoted by (-,-}jj. the inner product in
L2([0, \];Rd,dT). We note that for any j>e[0 , 1], ^"(1 + rt/2 belongs to the
Hilbert-Schmidt class and so

is a rigging of H#° by H^' and H (Z'. That is, the embeddings in (2.14) are
everywhere dense and belong to the Hilbert-Schmidt class. We will use the
notation < -, • > ( y ) ( = (., • ) < / > ) for the duality between H^ and H^ given by
the inner product in H0. The complexification of a real Hilbert space 3f
will be denoted by 3CC,

Next, we define Hilbert spaces on the (R-valued) sequence spaces as
follows: for a given (fixed) c7>0 put

The positive constant < r > 0 will be fixed according to Assumption 2.6 (d).
Now, for each }'e[0, 1] the rigged Hilbert space
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for the configuration space is defined by

From the definitions the embeddings in Jf ^ c jf w c jf ^ are everywhere
dense and belong to the Hilbert-Schmidt class. We denote the inner
products and norms on Jf^, tf™, and Jf(I> by ((•,.))<il, IHI+',
( ( • , - ) ) o y ) , I I - H o 0 , a n d ( ( • - • ) ) _ ) . I I - I I - ' , respectively. Furthermore, the
duality between stf™ and jf^, given by the scalar product in Jf(0y) is
denoted by « •, •»w. We see that for £ = ( f / ) / 6 z>

For later use we also introduce some subspaces of £2:

We see that for any ye [0, 1] the inclusions £2,ogc{2_ c jf(^ hold and in
Lemma 2.7 of ref. 32 it was shown that for any ^e^*(£2), M^iog) = 1.
Therefore, we may identify L2(Q, dp.} with L\M(?, dp) (see Remark 2.9 of
ref. 32).

In the following we suppress ye [0, 1] in the notation. Thus 3tf_ and
« -, •» stand for Jf1^ and « -, -»w, respectively. Denote by C*(Jf_, S)
the set of mappings from 3P_ to a Banach space B that are /c-times con-
tinuously differentiable in the sense of Frechet. Define Ckb(3F_,B) as the
subset of Ck(3#'_, B) which is characterized by the boundedness in usual
operator norms of the derivatives

For/: JfL -> C, identify/ '(•) e <e(#e_, C) with the vector/'(•) e Jf+, c and
/"(•) with the operator /"(•) e J^( J#>_, 3V+< c) by the formulas



In ref. 32, we have shown that the form & (°} for y = 0 is closable and the
closure is a Dirichlet form. Furthermore, there exists a diffusion process

For given y e [0, 1 ] and p. e <S<"(Q), we define the pre-Dirichlet form by

We would like to take a special subset J^> c jf+. Let Sffm be the space of
finite rank projections P on H0. P extends continuously to H _ and we use
the same notation P for the extention. Let {Pn}neNc-@&a be a fixed
increasing sequence such that (JneN Pn is dense in H0. We define

Finally let Jf c jf+ be a dense linear subset in the Hilbert space jf+. We
denote by ^fCj(^L), fc = 0,..., oo, the set of all Jf'-cylinder functions on
Jf_ with all derivatives up to k bounded, e.g., .^>C£° (Jf_) is the set of
all functions on jf_ such that there exist y V c N , {^,,..., ^^} <r jf and
/^eC^flR^) such that

for some p e N in the corresponding operator norms of the derivatives/(/>,
1 = 0,..., k. For example, for any /e C2pol(Jf_) := C^ol(Jfl, C) there exist
C > 0, /? e N such that

We introduce also the set C^(Jf_,B)<=Ck(je_, B) of all "polynomially
bounded" mappings,'7' i.e., which satisfy

For the function /e Cjjs C^JfL, C) we use the symbol Vf = f and
4r=Tr^o(/"). We introduce in the space Cl(J#'_) the norm

960 Lim ef a/.
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which is properly associated with $(®\ By the same method we can show
the same results for the form S^ for any ye [0, 1 ]'. In ref. 32, we have also
shown that the form <^0), and hence the form <?j/> for any y e [ 0, 1 ] too,
is related by the Dirichlet operator defined in the following way. Let P(x)
and U(Xf,x/, \i — j\) be the one-body and two-body interactions given in
Assumption 2.1. Let us define

be defined by

where dP is the gradient of P on Kd and 5'C/(x,, xy, \i — j\) is the gradient
of U with respect to the x, variable. For £ f e E , 5P(£,)e£ is defined by
dP(tt)(*):=dP($M), re[0, 1].

For ye [0, 1], let us define the Dirichlet operators H^} by

By Lemma 3.2(b) in Section 3, for each ye[0, 1] the Dirichlet operator
H^ is well-defined on C^jf'Z*). It can be shown that the form in (2.25)
is related by the Dirichlet operator in (2.28) in the following way:

See ref. 32 for the details.

2.2. Main Results

The main purposes of this paper are to show the essential self-adjoint-
ness of Dirichlet operators in (2.28) with minimum definition of domains
and to show some related results. For these purposes we need some addi-
tional assumptions on the interaction functions.

Assumption 2.6. Let P(x) and U(x, y; \i — j\) be the one-body and
two-body interactions introduced in Assumption 2.1. We assume further
that the following properties hold: P(x) and U(x, y; \i — j \ ) , i,jeZ", are
three times continuously differentiable functions satisfying the following
conditions:
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(a) For any positive real number d > 0, there exists positive constant
M(d) such that the bound

holds.

(b) There exists Me K such that

Furthermore, the bounds

hold and for any y e K.d and reN the third order partial derivatives of
U(x, y, r) with respect to x and y variables assume to be bounded by *P(r).

It would be worth to give comments on Assumption 2.6(c)-(d).
Assumption 2.6(c) for d^2 is introduced for technical reasons. We believe
that the restriction is unnecessary. In Section 5, we give a possible relaxa-
tion of Assumption 2.6(c). See Theorem 5.1. If the one —body interaction
P and its derivatives up to third order are polynomially bounded, i.e.,
PeC™i(Rd, R), then Assumption 2.6(d) can be relaxed. See Theorem 5.2.
We now state the first main result of this paper:

Theorem 2.7. (a) Suppose that the hypotheses in Assumption 2.1
and Assumption 2.6 hold and /ue'$0(Q). Then, for each ye[0, 1] the
Dirichlet operator H^ is essentially self-adjoint on the domain C2b(MJ(^}
in L\3V™,dn).

(b) Under the same hypotheses as in the above, S\ocC'^(^f(^~) is
also a domain of essential self-adjointness of H(^ for any y e [0, 1 ].

where Hess. P(x) is the Hessian of P(x), i.e., the dxd matrix whose l — k
elements are given by ((djdx')(d/dxk) P(x)), l,k=\, 2,..., d.

(c) In the case of d^2, there exist a function Q: R -> R and an
element b e Rd such that P(x) = Q( \x\ ) + b-x, xe Rd.

(d) The function Y of Assumption 2.1 (b) is exponentially decreas-
ing: there exist K>Q and < r>0 such that



The proof of the theorem will be given in the next section. From now on,
we discuss the log-concavity of Gibbs measures and related results. For
ye [0, 1 ], let us define an operator R(J\£): Jf™ -* ,#'w by
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We will show in Lemma 4.1 that V£e<« l o g , R(J\£) e ¥(,#''(l\ ,//(Z').

Definit ion 2.8. We say that a Gibbs measure n is uniformly log-
concave (ULC) in the form 6"(J} or ^'-positive if there exists /, > 0 such
that for any <-/>e 3f ^ and //-a.a. <,ce J(;<Z', the bound

holds.

In the following we again suppress ye [0, 1 ] in the notation if there is
no confusion involved. Let us fix a dense linear subset ,%' c ,rf+. We
say that a measure fie^( JfL) is Jf'-ergodic iff the only measurable sub-
sets of 3f_ which are Jf-invariant have //-measure zero or one. We recall
that a //-measurable set A <=,//_ is Jf-invariant if V</>e,;T, /^((A\A^)^j
U,V4)) = 0, where A^ = A+<j>= {£ + ((>: £e A}.

We define the space W^JLI) as the closure of C2
h(,'/(_] with respect to

the norm

Correspondingly, the space W\(n) is the closure of C^(Jfi) in the norm

As in ref. 7, we denote by .^(Jfljc.^jf.) the set of all probability
measures in Jf_ which is characterized by the following two conditions:

(a) For any ^ e^sa(,/i'_) there exists the square integrable
logarithmic derivative ^ of jj. and therefore the Dirichlet operator HM is
well defined on C£(.?TJ by the formula (2.28).

(b) Hp is essentially self-adjoint in L2(Jf_, dft) with a core C|(J^_).

From now on, if // e.^a(Jf_), for simplicity, we write the same nota-
tion Hp for the closure of Hfl. The following theorem was proven in ref. 7.
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Theorem 2.9 (ref. 7, Theorem 2). Suppose ,«e^a(jf_) is (ULC).
Then,

(a) DdJJ^WKn).

(b) If the measure /u is Jf-ergodic, then the point Oe R is a simple
eigenvalue of //^.

(c) If the measure ^ is Jf-ergodic, then there is a gap in the spec-
trum of the operator H^; moreover, H^\K on the orthogonal comple-
ment to the constants in L2(JfL, d/u).

For the (ULC) of Gibbs measures we have the following result.

Theorem 2.10. Suppose the hypotheses in Assumption 2.1 and
Assumption 2.6 hold. In addition, suppose the hypotheses of Assumption
2.6 (b) holds with a positive constant M>0, i.e., 3M>0 such that

Furthermore, suppose that

Then, for each ye [0, 1 ], any fj. e <3*(Q) is (ULC) in the form &™ with a
concavity constant k : = min{M— M', (M — M')^>0.

The proof of the theorem will be given in Section 4. Let us take the
subspace Jf c. 3f+ in Theorem 2.9 to be the special one J^ defined in
(2.24). We say that a Dirichlet form (<^, £>(<^)) is irreducible if for any
u e D($M) with S^(u, u) = 0 it follows that u is constant ^-a.e. In ref. 8, it was
shown that irreducibility of (<^, D(//1)) is equivalent with the extremality of
ju on the set of measures that have the same logarithmic derivatives. By
Theorem 3.4 and Theorem 3.7 of ref, 8, the irreducibility in turn is equiv-
alent with (space) ergodicity of fi under the condition of equation (3.2) of
ref. 8. For Gibbs measures, by the Gibbs property, the condition (3.2) of
ref. 8 holds true for any ke Jf0 through equation (3.3) of ref. 8. On the
other hand, under the condition of (ULC) in Theorem 2.10, a direct
application of the method used in refs. 9 and 54 shows that the Gibbs
measure exists uniquely. Thus, the unique Gibbs measure is automatically
an extremal one. Using this remark and Theorem 2.9, we state as a
corollary the following result.

Corollary 2.11. Suppose the hypotheses in Theorem 2.10 hold and
let//e^*({2) be the unique Gibbs measure. Then, the conclusions (a), (b),
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and (c) of Theorem 2.9 hold for the Dirichlet operator HM for any
ye [0,1].

From now on, we discuss the log-Sobolev inequality for Gibbs
measures. Let us recall that a probability measure n satisfies a log-Sobolev
inequality (LS) (in the form S™) if and only if there exists some c/J>0
such that for all/e W\ the following inequality holds'231:

The coefficient c^ is called the Sobolev coefficient. An important conse-
quence of the log-Sobolev inequality is that the semi-group T,:=e~'H»,
/>0 , is hypercontractive.<23)

We have the following result on (LS).

Theorem 2.12. Suppose the hypotheses in Theorem 2.10 hold.
Then, the unique Gibbs measure /<e^*(&) satisfies the log-Sobolev
inequality in the form <?j/' for any ye[0, 1] with a Sobolev coefficient
c/t = l~l, where 2 = min{ 1, M-M'}.

The proof of the theorem will be given in Section 4.
Let us define a semi-group (T,)l>0 in the space L2(/u) by

From Theorem 2.12 and Rothaus-Simon mass gap theorem,(40>45> we have
that OeR is a simple eigenvalue for H^ and H/J^-(2cfl)~l on the
orthogonal complement to the constants in L2(n). By the spectral theorem,
this implies the Z,2-ergodicity of the semi-group T,, t^Q:

where E l t f = \ j e _ f ( £ > ) d n ( £ ) . It is obvious that // is invariant under the
action of T,, /^O.

We will briefly discuss the Markov process associated with the semi-
group (Tt)l>0 in Section 5.
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3. ESSENTIAL SELF-ADJOINTNESS OF DIRICHLET OPERATOR

In this section we prove the essential self-adjointness of the Dirichlet
operator H(J} (Theorem 2.7). We shall use an approximate criterion for
essential self-adjointness of Dirichlet operators associated with Dirichlet
forms given by probability measures on Hilbert spaces. The approximate
criterion we will use is a modified version of the criterion given by
Albeverio, Kondrative and Rockner (ref. 7, Theorem 1).

We begin with the general formalism of Dirichlet forms and Dirichlet
operators in the framework of rigged Hilbert spaces. Let Jti?0 be a separable
Hilbert space with the scalar product (•, • )o and norm • |0 and let

be a rigging of Jf0 by the Hilbert spaces J^f+ and 3?_ with scalar products
and norms (•, •) +, | • | + resp. ( • , • ) - > I • I - • We suppose the embeddings in
the above are everywhere dense and belong to the Hilbert-Schmidt class.'7'
We also suppose that | - | _ ^ | - | 0 < | - | + . Otherwise it is sufficient to renorm
3f+. The duality between .2?+ and #f_ is given by the scalar product in ^
and will be denoted by <•,•>.

Let n be a probability measure on the Borel er-algebra 38(MP_) which
is quasi-invariant under translations by the vectors in a dense subset of
3f+. Let ft: 3f__ -> 3f_ be the logarithmic derivative of the measure /j.. See
section 2 and refs. 5-7. We assume that for any p e W

and

Let Hp be the Dirichlet operator on the domain D(Hfl) = C^ot(Jf_) given
by the formula.

Let $f+ and Jif_ be real separable Hilbert spaces with inner products and
norms < •, •> j r+ , \-\^+ resp. < • , • > . * • _ ' |•!.*•_. Suppose that the inclusions



holds, and suppose that the duality between Jf+ and JfL is given by the
inner product of JV0 and will be denoted by < • , - > . However, we do not
assume that the embeddings Jf+ c Jtf0 c. 3C_ belong to the Hubert-Schmidt
class.

The following is a result of ref, 37 which is a modified version of
ref. 7, Theorem 1. See also ref. 37, Theorem 3.1.

Theorem 3.1 (ref. 37, Theorem 3.2). Let n be a probability
measure on ^(<3f_) which satisfies the conditions (3.1) and (3.2). Let /? can
be written as /? = /?j + /?2. Suppose that there exists a sequence {bn: n e N},
bn: «3f_ -> Jf_, bn = bl n + b2n, neN, such that the following properties
hold:

(i) For each n e N, bn e C^ol( Jf_, Jf_).

(ii) For each n e N, there exists a constant c(n) ^ 0 such that
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(iii) For any « e N , there exists a contant M(«)^0 such that the
bound

holds uniformly in x 6 •#"_.

(iv) For any «eN, there exists a constant c^n] such that for any
h e Jf_, the bound

holds uniformly in * e 3tf_.

(v) There exists a constant c2^0 and N0eN such that for any
n^N0 and /z e Jf_ the bound

holds uniformly in x e J^_.

(vi) There exists a sequence { f l n : « e ^ } of positive real numbers
such that for the constants Ci(«), n e N , appeared in ( iv)



and such that for any ne N

Then H^ is essentially self-adjoint on C\(3F_).
The existence and the differentiability of the strong solutions of (3.6)

satisfying (3.7) are guaranteed by the conditions (i) and (ii) in Theorem
3.1. See ref. 7 and referneces therein. Thus one only needs to show (3.8). It
follows from (3.3) and (3.5) that
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Then the Dirichlet operator HM is essentially self-adjoint on C\(3P_).

For the reader's convenience, we describe the main ideas of the proof
of Theorem 3.1. For the complete proof, we refer to ref. 37. For any ne N
we define a differential operator Hn on the domain Cpoi(Jf_) by the
formula

(vii) as

We have used the following general parabolic criterion of essential self-
adjointness (see ref. 18, Chapter 5, Theorem 1.10): Let us consider the
Cauchy problem

where/e Cp0l(Jf_) is arbitrary. If one can show the existence of strong
solutions

for (3.6) such that

and
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Using a method of stochastic analysis*7-37) and the conditions (iii)-(v), it
can be shown that

and

The proofs of the inequalities in (3.10) and (3.11) are given in ref. 37
(Lemma 3.1 (a) and the bound (3.18) in ref. 37, respectively) in full details.
For the sake of self-containedness, we give a short-hand version of the
proof of (3.11) below.

The solution «„ of (3.6) can be found to be

where £„,*(') satisfies the stochastic differential equation:

Here, w: [0, oo)-> JfL is a standard Wiener process which corresponds to
the Hilbert space 3V0. The equation has a unique solution £HiX and it has
various differentiate properties (see ref. 7). Let rjh(t) be the directional
derivative of £„,*(?) in the direction h:

Then we have
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We first show that ?^(OeJfl for any / j e J f L . It follows from (3.14) and
condition ( i i i ) of Theorem 3.1 that for any /jeJfl

Using the expression for r\h(t] and the condition ( iv) we have

Substituting (3.16) into (3.15) and using the fact that H _ ^ | - ,r * we

obtain that \nh(t}\yr < oc. This proves that rfh(t)e.tf'_, P-a.s. It follows
from (3.12) that for any xeJfl and /isJfl

On the other hand, we obtain from condition (v) that

By the Gronwall's inequality we obtain

Since

the inequality (3.11) follows from (3.17) and (3.18).
Now (3.8) follows from (3.9)-(3.11), the conditions (v i ) and (vi i ) in

Theorem 3.1. For the details, we refer the reader to ref. 37.
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We shall use Theorem 3.1 to prove Theorem 2.7 (a). Recall the defini-
tions of /+, /0 and /_ in (2.16). For each ye [0, 1], let Jf ™ and Jf (Z} be
the Hilbert spaces defined by

Notice that the inner products ( ( - , • )}^w and ( ( - , • )).^n in jtT™ and Jf^1

are given by

hold.
In the rest of this section, we suppress y e [ 0, 1 ] in the notation. Recall

the definition /?(£) in (2.27). We prove (3.1) and (3.2) for our case.

Thus for y e [0, 1] the inclusions

Lemma 3.2. (a) Forany/?eN

(b) For any/>e^u{0}

Proof. We note that for any m e N and £ = (^),6Z.e 3?_

Using Fatou's lemma, Holder's inequality and the regularity of Gibbs
measures (Definition 2.2), we see that
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where the constant k(m) in the above is given by

Here we have used the fact that (\co\(^)2^o)2 for any }>e[0, 1]. This
proves the part (a).

(b) By the Schwarz inequality and the part (a) of the lemma, it suf-
fices to show that

Notice that for

For given ye [0, 1 ] it follows from (2.27) and (2.14) that for any ; e N and
£e<2 log

where -\L2 is the norm in L2([0, 1]; Rrf, di). It follows from Assump-
tion 2.1 (b)-(c) and the definition of £2log in (2.20) that ||/?(£)||_ < oo for
any £e£2 log. Since /<(f2 log) = l, ||/?||_ is defined ^-a.e. By the Schwarz
inequality,

By the regularity of n,

uniformly in /£/". Let dv0 be the Gaussian measure on E for which its
characteristic function is given by



Dirichlet Forms and Dirichlet Operators 973

where A* >0 is the constant appeared in Definition 2.2, By using Assump-
tion 2.1 (b) , the regularity of // (Definition 2.2) and the Fernique
theorem,'28' we obtain that for sufficiently small 6>Q

uniformly in /eZ v . Finally, we consider the last term in (3.22). We use
Assumption 2.1 (d), the Holder inequality, and the regularity of/u to obtain
that

uniformly in /e/v . The part (b) of the lemma follows from (3.22)-
(3.27). |

We decompose the logarithmic derivative fi of the Gibbs measure n
given in (2.27) as follows: For £ = (<!;,•) ei2|0g,

where
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and

In order to apply Theorem 3.1 to our case, we need to introduce a
sequence {bn:neN} which satisfies the conditions in Theorem 3.1. We
employ the approximation method used in ref. 37.

Let g: U -> R be a C°°-function satisfying the following proper-
ties'31'37):

For each n e N and t e R, we put

Next, we note that for j > 0 the Hilbert space H __ = H (_^ introduced in
(2.14) consists of generalized functions and so P(co) = ]l0P((o(T)) dr,
o> e H _, is not defined in general. As in ref. 37, we introduce the mean
operators (the Fejer operators) MB, Me N, as follows: Let

be the orthonormal basis for L\ [ 0, 1 ]) consisting of eigenvectors of
A=(-Ap + l). For <u = (w1,(y2,...)a)'')6H0c:L2([0, l];Rd,fi?r), define
partial sum operators Sk> keM, by

The mean operators (Fejer operators) Mn, ne N, on H0 are defined by
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Using these operators, let us define operators G , , : H _ _ - > H 0 , / 7 £ N , by

We collect useful properties of Mn, « e N, which we shall use in the sequel.

Lemma 3.3 (ref. 37, Lemma 4.2). Let Mny « e N , be the mean
operators defined as in (3.27). Then the following properties hold:

(a) (Fejer's theorem) For ewe C([0, I]; Rrf), |Mnco-co|H-^0 as
M -> 00.

(b ) IIA/Jl^^.^^l, « e M .

(c) \\AMn\\<f(L2_L2)SioLn, where a n = l +(2nn)2.

(d) \Maio\u^jd\aj\u{oranycoeC(\_0, 1];K").

(e) Gnco = Mn(a, coeL2, ne IU

Here we have used the abbreviated notation L2 - L2([0, 1 ]; Rrf, di}.

One can obtain the above properties from ref. 38, Chapter 8. For the
proof, we refer to ref. 37.

We are ready to introduce a sequence {&„; « e N} which approximates
the logarithmic derivative /? of fj.. Let {an: an>0, ne M} be a sequence of
positive numbers which satisfies the condition that for any a e R +

Recall the decomposition of/? in (3.28H3.30). For given ee(0, 1/4) and a
sequence {an : an > 0, n e !^J} satisfying (3.36), we define a sequence of map-
pings {bn : n G N}, bn: J^f_ -» JfL by

where for any ^ = (^,-),-eZv (and ye[0, 1])

and
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where for d = 1

and for d > 2

In the above, we have used the notation that for xe Rv

and P' and Q' are derivatives of P and Q respectively. See (2.26) and
Assumption 2.6 (c).

In the following, we prove that the sequence of mappings {bn, ne M}
introduced in the above satisfies the conditions in Theorem 3.1. In the rest
of this section, we suppose that the assumptions in Theorem 2.7 (a) hold
and we suppress y in the notations.

Lemma 3.4. Let {bn: n e N} be a sequence of mappings bn:^f__ -» 3F_
defined through (3.37)-(3.41). Then the following properties hold:

(a) For each neN, bne C2
fo{(^"_, ^f_).

(b) For each ne N, there exists a constant c(n) such that

Proof, (a) Notice that for
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By the factor exp(— anA
e), we have that for any ;'eZ"

for some c(n) > 0. By the definition of gn, ne N, in (3.32), it is easy to show
that for any ielv

Let f be the function introduced in Assumption 2.1 (b). It follows from
Assumption 2.6 (d) that for any i,jeZv

The above inequalities will be used frequently in the sequel. Using (3.40)
and (3.41), Assumption 2.1 (d), and the first inequalitiy in (3.43), we
obtain that

Here we have used the fact that |Gn£| i2<aj; \£\_ by Lemma 3.3 (c). Com-
bining the above results, we conclude that

for some constant c(n] >0.
Let b'n be derivative of bn, n e N. Since l|^(^)l|^ (Jr_,^_) <

Wn(£,)\\^(jf^, jr ). it follows from Lemma 3.5 (a) given below that
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Using Assumption 2.6 (d) and the definition of bn, neN, one can also
show that the operator norm of b"n(£) is bounded uniformly in £eJfl.
This proves the part (a) of the lemma.

(b) Since the | - |_-norm of b2,„,,•(£) is bounded uniformly in ^eJfl ,
it is easy to show that

On the other hand, it follows from Assumption 2.1 (d) and the second
inequality in (3.43) that

The above inequalities imply the part (b) of the lemma. This completes the
proof of the lemma. |

We next compute the derivative of bn which will be used later. For any
(j> e Jfl, \l/ e JV+,

Consider the case for d- 1. By a direct computation, it follows from
(3.37)-(3.40) that for <J = (^),-eZv6^_
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where for ^ = (^,-),-eZve^fL

Next, consider the case for d^2. For any x = (xl, x2,..., xd] e Ud, denote by
xx the d x d matrix whose k-l th elements, kt I = 1, 2,..., d, are given by xkx'.
A direct computation yields that

See Assumption 2.6 (c). For each ne N, put

Recall the definition ofb2,n(£) in (3.37), (3.39), and (3.41) for d^l. In the
case for d^2, a computation gives that for <J = (£,•),•<=£», ^ = (^,-) , e Z»e^f_,

From (3.45) and (3.48) we have the following result:

Lemma 3.5. (a) For any neN, there exists a constant M(«)^0
such that the bound

holds uniformly in £ e 3F__.
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(b) There exists a constant < x > 0 such that the bounds

hold uniformly in £, e,%_.

Proof, (a) From the definition of :tf_ in (3.20), it follows that for any

By the factor exp( — anA
e) in 6'1>n, it follows from (3.45) that for each n e N

We notice that A ^ 1 is an unbounded operator and the function
,x-> x2e~a"x*, x^ 1, has its maximum value

Thus, from (3.49) and above inequality, we see that

Next, we consider />2, «• From the properties of gn listed in (3.31) and
Lemma 3.3, one can easily check that for any n e N, the bounds

hold uniformly in to e H _. For the last bound in the above, we have used
Assumption 2.1 (b) and Assumption 2.6 (a). We first consider the case for
d=\. Using the expression in (3.45) and the bounds in (3.51), one obtains
that
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for some constant l$=0, and so by (3.49)

Due to Assumption 2.6 (d), the first inequality in (3.43), and Lemma 3.3
(c), a direct estimate yields that

for some constant K'. Thus, the part (a) of the lemma for d= 1 follows
from (3.50), (3.52) and (3.53).

Consider the case for d^2. Let Rn(x) be defined as in (3.47). Note
that

Since P is a C3-function on Ud and since |gn(|x|)| <2« for any xeKd, by
Assumption 2.6 (d) there exists a constant c^O such that

Using (3.54), the definition b(
2

1^ in (3.48), (3.49), and the bounds in (3.51),
it is easy to show that

for some constant />0 uniformly in £eJf_ . Thus the part (a) of the
lemma for d^2 follows from (3.50), (3.55), and (3.53).

(b) Notice that for any £ = (£,), (j> = (<j>t) e 3f_ and n e N

From the definition of b\ „ in (3.44), one has that

We notice that

822/90/3-4-30
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By using the bounds in (3.51) and the method similar to that employed to
obtain (3.52) and (3.55), one can show that for each neN there exists a
constant 1^0 such that

Thus we conclude that

By using the method similar to that used to obtain (3.53), it is easy to show
that for each n e M there exists a constant K' such that

The part (b) of the lemma follows from the above bounds. |

Lemma 3.6. There exists a constant c, ^ 0 and N0 e fol such that for
any n ̂  N0 and h e Jf_ the bound

holds uniformly in £, e 2f_ and n^N0.

Proof. It follows from the definition of Jf_ in (3.20) that for any
« e N, £, = (£,.) e 3f_ and h = (h,) e Jf_

Consider the case for d= 1. From (3.45) and (2.14) it follows that

Recall that (Kg^xKl by (3.32), and P(x) = P(x)- x 2/2. Thus by
Assumption 2.6 (b) we obtain that
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Using Assumption 2.6 (d) , we also obtain that

We use the second inequality in (3.43) to (3.59) to conclude that

for some constant c'>0. The lemma for d— 1 follows from (3.56)-(3.58)
and (3.60).

We next consider for d> 2. For given g > 0, put Me := M — E, We write

where M is the constant appeared in Assumption 2.6 (b). Since
P(x) = Q( x\) + ^\x\2 + b-x (see (3.42)),

Since Hess. P(x)^Ml, we see that Hess. (9( |x |)^fi l . Thus we may assume
that there exists R > 0 such that

Let Rn(x) be defined as in (3.47). Suppose that « is sufficently large so that
HffR. Then, we note that for any .v, y e K.d
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where (x, y) is the inner product of x and y in Rd. We note that xx/\x\2

and (l-(xx/\x\2))/\x\ are positive definite for any Q^xeRd. Thus, we
conclude that

and

In the above we have used the fact that g n ( \ x \ ) = \x\, if \x\ ̂ R ««) (and
hence (y, Rn(x) y) = (y, Hess. V(x) y)^(M- 1) \y\\ and g»(\x\)>R if
\x\ > R. Using the above bound, we obtain that for £ = (£,) e Jf_ and
h = (/!,) 6 Jf_

Thus by (3.56), we conclude that

The part (b) of the lemma follows from (3.57), (3.60), and (3.63). This
completes the proof of the lemma. |

Finally, we show that the conditions (vi) and (vii) of Theorem 3.1 are
satified:

Lemma 3.7. Under the assumptions in Theorem 2.7 (a) the follow-
ing results hold:

(a) There exists a constant c such that for each n 6 N the bound

holds, where {an : n £ f\l} is the sequence introduced in the definition of
b,,n.

(b)
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Proof. Due to the definitions of /?, and /> ,_„ in (3.29) and (3.38)
respectively, we have that for £ = (£,) e 3tF_

Here we have used the fact 1 — exp( — x)^x for x ^ 0. Notice that for any
ee(0, 1/4), the operator A2e~l belongs to the trace class. Let dv0 be the
Gaussian measure given in (3.25). Then by the regularity of// and Theorem
3.11 of ref. 46 we conclude that for given ee(0, 1/4)

This proves the part (a) of the lemma.

(b) We first consider the case for d= 1. Let ^(
2", £<2

2) resp. b(
2

l)
a, b%\

be given as in (3.30) resp. (3.40). Then for £ = (£,)e JT_

Let us consider the first term in the right hand side of (3.64). For any <oeE
it follows from (3.30) and (3.40) that

By Lemma 3.3 (d)-(e) and Assumption 2.1 (b), we obtain that
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Let dv0 be the Gaussian measure on E defined in (3.25). Then the Fernique
theorem'28' implies that for sufficently small 6 > 0

Using the monotone convergence theorem, the regularity of n, the
Lebesgue dominated convergence theorem and Lemma 3.3 (a), we con-
clude that

Next, let us consider the second term in the right hand side of (3.64). By
Assumption 2.1 (d),

which is /i-integrable by the regularity of p, the Fernique theorem and
Assumption 2.6 (d). By Lemma 3.3 (a), one can show that for any
£ = (£,) e «,«,., i,jeZ\ andre [0 , 1]

Thus we use again the monotone convergence theorem and the Lebesgue
dominated convergence theorem to conclude that

Combining (3.66) and (3.67), we complete the proof of the lemma for d= 1.
For d^2, we need only to show (3.66). By Assumption 2.1 (b) and

Lemma 3.3 (d)-(e), it can be checked that the bound in (3.65) also holds
in the case ofd^2. Thus by the method used to obtain (3.66), we conclude
that (3.66) holds for d^2. This completes the part (b) of the lemma. |
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We are now in a position to prove Theorem 2.7.

Proof of Theorem 2.7. (a) We need to check that all conditions in
Theorem 3.1 are satisfied. The conditions (3.1) and (3.2) are satisfied
by Lemma 3.2. The conditions (i)-(v) in Theorem 3.1 are satisfied by
Lemma 3.4, Lemma 3.5, and Lemma 3.6. Notice that we have chosen the
sequence {«„: ne N} such that the property (3.36) holds, and so Lemma
3.5 (b) and Lemma 3.7 (a) imply that the condition (vi) is satisfied. Finally
Lemma 3.7 (b) implies the condition (vii). Thus Theorem 2.7 (a) follows
from Theorem 3.1.

(b) Recall the definition of ^locCkb in (2.24), i.e., ̂ locCkb = ̂ Ckb.
Since Jf0 is dense in J^+, the part (b) of the theorem follows from
Lemma 6 of ref. 7 together with the part (a) of the theorem. For the details,
we refer to Lemma 6 of ref. 7 and its proof. This proves Theorem 2.7
completely. |

4. UNIFORM LOG-CONCAVITY AND
LOG-SOBOLEV INEQUALITY

We shall discuss the uniform log-concavity (ULC) and log-Sobolev
inequality (LS) for Gibbs measures, and then produce the proofs of
Theorem 2.10 and Theorem 2.12. Recall the definition of R™ in (2.30).
Throughout this section, ye[0, 1] is given (fixed) and we again suppress
y in the notation. We also recall the definition of £2log in (2.20) and the fact
that M&iog) = 1 for any 0*(i2). It follows from (2.27) and (2.30) that for
any £ = (£,-),-eZve£log and (/> = (<j>i)isre^

We begin with the following result:

Lemma 4.1. Under Assumption 2.1 and Assumption 2.6, /^(£)e
y(je+ , 3^_) for any £ e Olog.

Proof. Let £ = (£,),-6Z>.e{2log. Then there is NeN such that
|<!;,-L<AMog(|/| + l), / eZ v . By (4.1) we have that for <t> = ((/>,)e Jt?+
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By Assumption 2.6 (a) and (4.1), we also have that

for some constants M, ^ 0 and c 5= 0. By using Assumption 2.6 (d) it is easy
to show that

By (4.2)-(4.4) and the first inequality in (3.43), it is clear that

This completes the proof of the lemma. |

We now turn to prove Theorem 2.10.

Proof of Theorem 2.10. Recall the representation (R^}}, in (4.1).
For £ = (£,.) e Olog and tj> = (^,.) e j/f+ , we have that

and
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By Assumption 2.6 (d),

where M' is the constant appeared in Theorem 2.10. Since Hess. P(x) > Ml
(and so Hess. P(x) ^ (M - 1) 1) and A = -Ap + 1, it follows from (4.5H4.7)
that for any £ e £2,og and $ € J^f+

where A = min{M —M', (M — M ' ) y } . Here we have used the fact that

This proves Theorem 2.10 completely. |

The rest of this section is devoted to prove the log-Sobolev inequality
(Theorem 2.12). As in refs. 9 and 37, we can easily check that for any
y e [0,1] andweJ^Cn^')

Thus, it suffices to prove Theorem 2.12 for y = 0. In the rest of this section,
we consider only the case for y = 0, and suppress y(=0) in the notation.
Thus, £ll,J%,Hs,se{+,Q,-}, stand for <^0), ^0), l-^0), se {+, 0, -},
etc.

We shall use an extended version of the method developed in the proof
of Theorem 5.2 of ref. 37. Let,« be the unique Gibbs measure. In ref. 35,
we have shown that for any pure boundary condition <f e £f, the sequence
{//„}, nn = y ^ ( • |<f) (see (2.12)), has a limit point in 0*({2) for any
sequence of finite subsets Anc.Zv, An \ Zv. Since the set ^*(£2) has only
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one element, we may assume that n = limn_>z.• /*„, with a fixed pure bound-
ary condition £e£2log.

By Theorem 2.7 (b) , the Dirichlet operator H^ is essentially self-adjoint
on J^ocC"(.Jfl). Thus it suffices to prove the log-Sobolev inequality for
/eJ^cC^JfJ. Let us fix /eJ^ocC^(Jf_). Then there exist Aef6 such
that /depends only on the variables in A. For any An^A, we define

See (2.11) and (2.12) for the notation. We consider //'"' as a measure on
(EA\ M(EA»)} defined by the formula (4.9).

For each / e /" and s e { +, 0, —}, let H^, be the identical copy of the
Hilbert space H^ defined in (2.14)-(2.15) for y = 0, and let

By the definition, the embeddings

are everywhere dense and belong to the Hilbert-Schmidt class. Then the
logarithmic derivative /?(n) of /u(") which is considered as a measure on
^(H^) can be easily calculated to be (cf. (2.27) for 7 = 0)

where ieAn and co = (coi)i£A>ieEA«.
Let us describe the basic idea of the proof of Theorem 2.12. For each

« e N , we shall approximate [J(n) by a sequence of maps {b^:me^},
foW. H M _> |-| («)^ m 6 ^j^ which are logarithmic derivatives of measures ^,



m e N , on EA«. We then show that for n,m&H, the measure //^' satisfies
the log-Sobolev inequality with Sovolev coefficient c^w = 1 ~v uniformly in
«, m e N, and that for « e W, //<£' converges to n(n) weakly as m -> oo. This
implies that for « e N , ̂ <n) satisfies the log-Sobolev inequality with
cy«i = l~'. Since /UM converges to [i in the local convergence topology, we
prove Theorem 2.12.

Let £>0 be an arbitrary (fixed) real number such that ME — M'>Q,
where Me :=M — s, and M and M' are the constants appeared in Theorem
2.10. As in the proof of Lemma 3.6, we write the one-body potential P as
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Notice that Q(\x\) = |(M£- 1) \x\2 + Q(\x\) for d^2. Let us define for
each mef^

As in (2.8) and (2.9), we write for oj^lco^^^eEA» and <f = (<f , ) , - 6 Zv6^

For given ^e^ and m, ne N, we define a probability measure n(£ on EA»
by

where Z(£ is the normalization factor. For given Ane<£, let {b(£}: me N}
be the sequence of maps b(£: H("} -> H("', m e M, defined by
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where ^ and /?!,"•2) have been defined by (4.12), and b^ is defined by

By a direct calculation, it can be proved that the maps b(^ defined in
(4.17)-(4.18) are the logarithmic derivatives of the measure p^, m e W ,
on EA\ See the proof of Lemma 4.2 (a) below.

Let us denote by H^M the Dirichlet operators for the measures //<£>
(with respect to the rigging (4.11)). The following is a result corresponding
to Lemma 5.1 of ref. 37.

Lemma 4.2. Suppose that the assumptions in Theorem 2.10 are
satisfied. For each n, me N, the following results hold:

(a) H^M is essentially self-adjoint on ^Cf(H(^).

(b) Let 7>(/!'m) = exp( — tH^w] be the corresponding semi-group on
L2(H™, n™). Then T(*m\ t e U ™ , forms a positive preserving semi-group
from C^H^) into itself.

(c) For any e>0 such that M — M'— e>0, there exists A f ( e ) e N
such that for m ̂  N(e) the measure ^ satisfies the log-Sobolev inequality
with Sobolev coefficient c/1i») = A(e)~ 1 uniformly in n and m, where
I(fi) = min{l,M-M'-e}.

Proof, (a) It follows from (4.14) that

Thus a calculation shows that for each n, m e N the map b(^ defined in
(4.17)-(4.18) is the logarithmic derivative of the measure ^ defined in
(4.16). Using the method similar to that employed in the proof of Lemma
3.2, one can show that the conditions (3,1) and (3.2) corresponding to
K = b(^ and /^ are satisfied. By the definition of b™ in (4.17) and
(4.18), and the method used in Lemma 3.4, it is easy to show that the
conditions (i) and (ii) of Theorem 3.1 for b^ are satisfied. Notice that
H_ = L2([0, 1 ],<&). Using Assumptions 2.1 (b) and (d), and the method
used in the proof of Lemma 3.5 (b), one can show that for each n,meN
there exists a constant c(n, m) such that the bound
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holds for any (j> e H ("' uniformly in o> e H ( "> . By Theorem 1 and Lemma 6
of ref. 7, the above results imply the part (a) of the lemma.

(b) This follows from Lemma 4 of ref. 7.

(c) Consider the case for d^2. The case for d= 1 can be handled in
the similar manner. From the definition of b(£^ in (4.18), it follows that
for any ^ = (^.),.^neH<,«) and co = (o;,.),.e^e H J">

where

See the expression Rn(x) in (3.47). Since Hess. Q(\x )>Ml, Hess. £>(|.v|)
^ e"\. Thus we may assume that there exists R > 0 such that

By the argument similar to that used in the proof of the inequality (3.62),
we prove that for any x, y e Rrf

if m ^ N(e) for some N ( e ) e N . It follows from (4.19) and the above bound
that

The above bounds imply that for any m^N(e)

uniformly in m,neN.
On the other hand it follows from the definition in (4.12) that

Using the definition of /?(
2"-2) in (4.12) and Assumption 2.6 (d), we obtain

that
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uniformly in m, ne N and £,&&. The bounds in (4.20 H 4.22) imply that

uniformly in m, ne N and £ e £ f . The above implies that the measure /u(^
is uniformly log-concave. The part (c) of the lemma follows from the part
(a) of the lemma and the method used in the proof of Theorem 3 of ref. 7.
For the details, we refer to ref. 7. This proves the lemma completely. |

We now produce the proof of Theorem 2.12.

Proof of Theorem 2.12. As stated before, it suffices to show the
theorem for y = 0. Using (4.13), (4.15), and Assumption 2.1 (c), it can be
checked that for given ne N and £ef2log there exists a constant £>0 and
c(n, £,) such that

Since Ms — M' > 0, the right hand side of the above is l^-integrable. Also,
by Lemma 3.3 (a) and (e),

Thus we use the Lebesgue dominated convergence theorem to show that
for each n e N, fi^ converges to //"' weakly as m —> oo. By Lemma 4.2 (c),
we conclude that for each n, the local Gibbs measure f^M = y * ( - \ ^ )



Dirichlet Forms and Dirichlet Operators 995

satisfies the log-Sobolev inequality with Sobolev coefficient H(e) '.
Since e > 0 is arbitrary, we see that the log-Sobolev inequality holds
with a Sobolev coefficient c^ = l~l, A = min{ 1, M — M'}. Since for
/eJ^ocC|°(JfL), //(">(/)->/<(/) as«-> OG, the same conclusion holds for p.
This completes the proof of Theorem 2.12. |

5. IMPROVEMENTS AND CONCLUDING REMARKS

It would be worth to give comments on some conditions in Assump-
tion 2.6. The requirements of the spherical symmentricity of one-body
interactions for d^-1 (Assumption 2.6 (c)) and the exponential decay
property of two-body interactions (Assumption 2.6 (d)) can be relaxed in
some situations.

Let us first consider a possibility of relaxing Assumption 2.6 (c).<371

For d~^ 2 let us assume that the one-body interaction P e C3( Rd; U) can be
written as

where F is a C3-function satisfying the following bounds: there exists a con-
stant K> 0 such that for any x e Rd

and F(3)(x) is bounded (in the oeprator norm) uniformly in .xe(Rrf, where
F(3) is the third order derivative of F.

Theorem 5.1. Instead of Assumption 2.6 (c), let us assume that the
one-body interaction P satisfies (5.1) and (5.2) for d^-2. Then Theorem 2.7
and Corollary 2.11 still hold.

Proof. Recall the definition bn in (3.37)-(3.39) and (3.41). For n e N
and ieZ\ we replace b(^,(£,•) in (3.41) by

Due to (5.1) and (5.2), it is easy to check that Lemma 3.4-Lemma 3.7
remain true. This implies Theorem 5.1. We leave the details to the
reader. |
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Next, we consider polynomially bounded one-body interactions for
which we can relax the exponential decay property of two-body interac-
tions in Assumption 2.6 (d). Assume that the one-body interaction P
belongs to C*ol(R

d, R). Thus, there exist qeH and M>0 such that the
bound

Instead of ls, se { + , 0, —}, defined in (2.16), we introduce Hilbert spaces
on the space of real-valued sequences as follows: for a given (fixed) positive
real number p with p>d, put

For each y e [0, 1 ] and s e { +, 0, -}, let H^ be the Hilbert spaces defined
in (2.14) and let 3?™ = H^®/,. Thus, as in (2.17)

is a rigging of W™ by tf™ and tf(1}, We also define Jf ^ and Jf (Z>
analogously (cf. (3.20)). For any ye[0, 1] and Gibbs measure //, let ^^
and //^ be the Dirichlet form and associated Dirichlet operator with
respect to the rigging (5.5).

Let y be the function in Assumption 2.1 (b). Assume that there exist
a positive real number p with p > d and K > 0 such that

In (5.4) we choose the positive real numberp>dsuch that the bound (5.6)
holds.

Theorem 5.2. Instead of Assumption 2.1 (b) and Assumption 2.6
(a), let P satisfy the bound (5.3). In addition, assume that the function y
in Assumption 2.1 (c) and Assumption 2.6 (d) satisfies the bound (5.6).
Then, all the results listed in Section 2.2 still hold with respect to the
riggings in (5.4) and (5.5).

Proof. Let y e [0, 1 ] be given and we suppress y in the notation. Notice
that f2 l ogcjf_. We first show that ||/?(£)|U<oo for any £e&,og and so
\\fi\\- is defined ,w-a.e. It follows from (5.4) that for any <J = (<J,.)ef3 log
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where !/?,•(£)]_ satisfies the bound in (3.22). Consider the second term in
the right hand side of (3.22). If £ = (£,•) ei2log, there exists NeM such that
for any 0^ /eZ" , K,-L<//log(|/ | + 1). Thus, by (5.3) we have that

By (5.6) and Assumption 2.1 (d), the last term in the right hand side of
(3.22) is bounded by M'(7Vlog(|/| + 1)). By (3.22) and (5.7), the above
results imply that | | / ? (< j ; ) l l _ < oo.

The estimates in (3.24), (3.26), and (3.27) imply that |^|4_ eL2(/0. Let
{bn} be the sequence of maps defined as in (3.37H3.41). We claim that all
the results in Lemma 3.4-Lemma 3.7 also hold in this setting. Notice that
for given peN there exists a constant M(p) > 0 such that for any /, j e Z"
the bound

The above is the bound corresponding to that in (3.43). In order to give
the basic idea of the proof of our claim, consider Lemma 3.6. Let us prove
that the bound (3.60). By using (5.6), (5.8), and the method used in
(3.59 H3.60), we obtain that for any £eJ*l?0 and heJf_

for some constant C' > 0. It is obvious that the methods used in the proofs
of Lemma 3.4-Lemma 3.7 can be applied to prove our claim. Also, the
methods used in Section 4 can be applied to the new setting. We leave the
details to the reader. |

In Theorem 2.12, we have stated the log-Sobolev inequality with a
Sobolev coefficient ctl = H~l, l = min{ 1, M — M'}, uniformly in ye[0, 1].
We may take c^ = (M — M')~l for y = 1. As in ref. 9, we can proceed with
A = — Ap + Ml instead of A = — Ap + I in the definition of rigged Hilbert
spaces in (2.13)-(2.14). Then, we have I(e) = (Me-M')/M in Lemma 4.2
(c) for y = 0 (see the inequality below (4.22)). Using the same method used
in the proof of Theorem 2.12, we have the following log-Sobolev inequality
for y = 0:
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On the other hand, with a newly defined A, we have the following
inequality:

Our claim now follows from (5.9) and (5.10).

It would be worthwhile mentioning the stochastic dynamics related to
the Dirichlet forms. Let us use the same notation (£(J\ D(£™)) for the
closure of the pre-Dirichlet form of (2.25). In ref. 32, we have shown that
(S"(°\ D(S(°])) is a quasi regular Dirichlet form.(39) The method can be
applied to show that (6"(J\ D ( S ( ^ ) ) is a quasi regular Dirichlet form for
any ye [0, 1]. In fact, it follows from a general theory (see ref. 39, Chapter
IV, Section 3) since the condition (3.1) of ref. 39, page 170, holds trivially
in our case. Since (S(J\ D(S'(J))) has also a local property,(34) there exists
a diffusion process M :=(Q,F,(X,)l>0,(P()(s^(n) which is properly
associated with (£(*\ D(S(J})), i.e., for each bounded weL2( / / ) ,

Furthermore, since the embeddings Jf ̂ c^'c jf <•» are Hilbert-
Schmidt and the conditions (C.3) and (C.4) of ref. 39, Chapter V, Sec-
tion 3, are satisfied from Lemma 3.2 of this paper, we see then from
Proposition 2.5 and Theorem 3.1 of ref. 39, Chapter V, that there exists a
Jf'Z'-valued Brownian motion (Wt),^0 over ^f(f such that the process M
weakly solves the stochastic differential equation of the following type:

That is, there exists a countable orthonormal system Kw(c,y?(l}) of Jf (J]

such that



holds, where uk(£) := H w«k , f»Hi / ) , £eJf ( Z>, and for all ^eJf^ except
a capacity zero set, (W*,&,,P()t>o is a one-dimensional Brownian
motion starting at zero for all k e K(y\ Moreover, for each k e KM,
Hw«A:, W,^Hw = Wkt, t^O, P(-a.s., for all £eJV(? except a capacity zero
set. For the details we refer to ref. 39.

The stochastic dynamics (5.12) and the Gibbs states for quantum
unbounded spin systems have been also constructed as an infinite volume
limit of the corresponding finite volume cut-off systems by S. Albeverio,
Yu. G. Kondratiev, and T. V. Tsikalenko in ref. 10. Under proper condi-
tions, they have shown the existence of a unique solution to (5.12) (ibid,
Theorem 4), the ergodic property of the solution Markov process (ibid,
Theorem 5), and the existence of a unique invariant (Gibbs) measure (ibid,
Theorem 6). For the details we refer to ref. 10. Thus, this paper can be
viewed as a complement of ref. 10.
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